In 1997 the parapets and timber decking were replaced. The refurbishment utilized the cast iron pylons in conjunction with four fluted Corinthian columns almost 6 metres high. Its construction was promoted by Bailie Harvey for the safer passage of factory workers who had previously used a ferry at the same location; “in time of spate a Clyde Viaduct” was opened alongside the original ‘flat’ bridge in Glasgow with five spans.

The Clyde bridges have bridged the years, engineering would flourish. The lower Clyde was about to be transformed into a navigable channel capable of receiving ocean-going vessels into Glasgow, which would become one of the world’s great ports.

In 1870 the bridge closed for extensive repair. The centre span of the viaduct was constructed of cast iron cylinders. The three river spans were of bowstring construction, whilst the four land spans were of plate web construction. Only the piers of the bridge remain.

The first tidal weir was completed in 1901, about 1.2km downstream of Stockwell Street, on the site of an earlier Glasgow Bridge which was designed by the Scottish Engineer. The stone faced structure is in the form of a seven span masonry arch, is in this case a prestressed concrete footbridge. It occupies the site of a timber bridge which was built in 1901, using timber salvaged from a service bridge used during the construction of the Clyde Bridge. The bridge was burnt down and replaced at least once before being replaced by the present concrete structure.

Polmadie Bridge - 1955

The bridge, with three spans, of 30 and 66 metres, was designed to accommodate future increases in traffic volume. The masonry arches were being constructed out of granite, and the pier was founded on piles driven down to a stone level by a combination of a beam and very hard digging inside a chamber of compressed air. The main work of the structure was built with very hard graniteShock, until the masonry became a solid foundation on which the bridge was erected.

A previous Polmadie Bridge of five span masonry arch design, was built in 1774 - 1776. Its engineer is thought to have been James Watt, developer of the steam engine, who spent the early years as an engineer.

1st Dalmarnock Railway Bridge - 1861

Engineer: George Graham

Built for the Caledonian Railway Company between 1861 and 1864, this bridge carried the two tracks of the Dalmarnock Branch line over the Clyde. The bridge is a seven-span masonry arch bridge, it is 54m long with a Royal width of 9m, the centre span of 12m is the largest of the 8m wide spans.

2nd Dalmarnock Railway Bridge - 1874

Engineer: James Miller

The debate on weirs on the Clyde has rage for some time. The need to protect the foundations of the Brunston Bridge in 1711, the 19th century engineering advisor theorized for and against in 1810. From 1814 to 1818 we were dead on site, this view was completed in 1819, and remained until 1823 under an ambitious foundation in 1849 heading to collapse. The present steel structure, which also lacks critical spans, was designed after the Clyde, was completed in 1949 as part of the scheme to replace the Clyde Bridge in 1949 as part of the scheme to replace the Clyde Bridge in 1949.

Polmadie Bridge - 1955

Engineer: Considère Constructions Ltd

The bridge, with three spans, of 30 and 66 metres, was designed to accommodate future increases in traffic volume. The masonry arches were being constructed out of granite, and the pier was founded on piles driven down to a stone level by a combination of a beam and very hard digging inside a chamber of compressed air. The main work of the structure was built with very hard graniteShock, until the masonry became a solid foundation on which the bridge was erected.

A previous Polmadie Bridge of five span masonry arch design, was built in 1774 - 1776. Its engineer is thought to have been James Watt, developer of the steam engine, who spent the early years as an engineer.

1st Dalmarnock Railway Bridge - 1861

Engineer: George Graham

Built for the Caledonian Railway Company between 1861 and 1864, this bridge carried the two tracks of the Dalmarnock Branch line over the Clyde. The bridge is a seven-span masonry arch bridge, it is 54m long with a Royal width of 9m, the centre span of 12m is the largest of the 8m wide spans.

2nd Dalmarnock Railway Bridge - 1874

Engineer: James Miller

The debate on weirs on the Clyde has rage for some time. The need to protect the foundations of the Brunston Bridge in 1711, the 19th century engineering advisor theorized for and against in 1810. From 1814 to 1818 we were dead on site, this view was completed in 1819, and remained until 1823 under an ambitious foundation in 1849 heading to collapse. The present steel structure, which also lacks critical spans, was designed after the Clyde, was completed in 1949 as part of the scheme to replace the Clyde Bridge in 1949 as part of the scheme to replace the Clyde Bridge in 1949.

Polmadie Bridge - 1955

Engineer: Considère Constructions Ltd

The bridge, with three spans, of 30 and 66 metres, was designed to accommodate future increases in traffic volume. The masonry arches were being constructed out of granite, and the pier was founded on piles driven down to a stone level by a combination of a beam and very hard digging inside a chamber of compressed air. The main work of the structure was built with very hard graniteShock, until the masonry became a solid foundation on which the bridge was erected.

A previous Polmadie Bridge of five span masonry arch design, was built in 1774 - 1776. Its engineer is thought to have been James Watt, developer of the steam engine, who spent the early years as an engineer.

1st Dalmarnock Railway Bridge - 1861

Engineer: George Graham

Built for the Caledonian Railway Company between 1861 and 1864, this bridge carried the two tracks of the Dalmarnock Branch line over the Clyde. The bridge is a seven-span masonry arch bridge, it is 54m long with a Royal width of 9m, the centre span of 12m is the largest of the 8m wide spans.

2nd Dalmarnock Railway Bridge - 1874

Engineer: James Miller

The debate on weirs on the Clyde has rage for some time. The need to protect the foundations of the Brunston Bridge in 1711, the 19th century engineering advisor theorized for and against in 1810. From 1814 to 1818 we were dead on site, this view was completed in 1819, and remained until 1823 under an ambitious foundation in 1849 heading to collapse. The present steel structure, which also lacks critical spans, was designed after the Clyde, was completed in 1949 as part of the scheme to replace the Clyde Bridge in 1949 as part of the scheme to replace the Clyde Bridge in 1949.

Polmadie Bridge - 1955

Engineer: Considère Constructions Ltd

The bridge, with three spans, of 30 and 66 metres, was designed to accommodate future increases in traffic volume. The masonry arches were being constructed out of granite, and the pier was founded on piles driven down to a stone level by a combination of a beam and very hard digging inside a chamber of compressed air. The main work of the structure was built with very hard graniteShock, until the masonry became a solid foundation on which the bridge was erected.

A previous Polmadie Bridge of five span masonry arch design, was built in 1774 - 1776. Its engineer is thought to have been James Watt, developer of the steam engine, who spent the early years as an engineer.

1st Dalmarnock Railway Bridge - 1861

Engineer: George Graham

Built for the Caledonian Railway Company between 1861 and 1864, this bridge carried the two tracks of the Dalmarnock Branch line over the Clyde. The bridge is a seven-span masonry arch bridge, it is 54m long with a Royal width of 9m, the centre span of 12m is the largest of the 8m wide spans.

2nd Dalmarnock Railway Bridge - 1874

Engineer: James Miller

The debate on weirs on the Clyde has rage for some time. The need to protect the foundations of the Brunston Bridge in 1711, the 19th century engineering advisor theorized for and against in 1810. From 1814 to 1818 we were dead on site, this view was completed in 1819, and remained until 1823 under an ambitious foundation in 1849 heading to collapse. The present steel structure, which also lacks critical spans, was designed after the Clyde, was completed in 1949 as part of the scheme to replace the Clyde Bridge in 1949 as part of the scheme to replace the Clyde Bridge in 1949.
The story of Glasgow's Clyde Bridges in many ways reflects the development of Glasgow. Glasgow may not have grown beyond a quiet monastery town had it not also been the lowest fordable point on the Clyde. As the city flourished in the 18th and 19th centuries, the demands for better communications resulted in bridges being built which, in turn, encouraged further trade and prosperity. So bridges both nurtured and reflected the growth of the city.

The story of Glasgow's bridges also reflects the story of transportation, from the pedestrian and horse traffic of the middle ages, through railway mania in the 19th century, and the 20th century age of the motor car, onwards into the new millennium.

It also reflects the story of civil engineering. Developments in engineering materials and knowledge can be traced in the techniques used to construct the Clyde bridges. Timber and stone, cast iron, wrought iron and steel, reinforced and pre-stressed concrete, were all used in Glasgow's Clyde bridges. Virtually all bridge types are represented on the Clyde: the beam, beam and slab (with solid girders, lattice girders or box girders), the arch, the tied bowstring arch, the suspension bridge, the cable stayed bridge and the balanced cantilever. A walk from the Millennium Bridge to Dalmarnock Bridge will take you past exhibits of more than 150 years of bridge engineering history.

Reflecting on Glasgow's Clyde Bridges

The story of Glasgow's Clyde Bridges in many ways reflects the development of Glasgow. Glasgow may not have grown beyond a quiet monastery town had it not also been the lowest fordable point on the Clyde. As the city flourished in the 18th and 19th centuries, the demands for better communications resulted in bridges being built which, in turn, encouraged further trade and prosperity. So bridges both nurtured and reflected the growth of the city.

The story of Glasgow's bridges also reflects the story of transportation, from the pedestrian and horse traffic of the middle ages, through railway mania in the 19th century, and the 20th century age of the motor car, onwards into the new millennium.

It also reflects the story of civil engineering. Developments in engineering materials and knowledge can be traced in the techniques used to construct the Clyde bridges. Timber and stone, cast iron, wrought iron and steel, reinforced and pre-stressed concrete, were all used in Glasgow's Clyde bridges. Virtually all bridge types are represented on the Clyde: the beam, beam and slab (with solid girders, lattice girders or box girders), the arch, the tied bowstring arch, the suspension bridge, the cable stayed bridge and the balanced cantilever. A walk from the Millennium Bridge to Dalmarnock Bridge will take you past exhibits of more than 150 years of bridge engineering history.

Reflecting on Glasgow's Clyde Bridges

The story of Glasgow's Clyde Bridges in many ways reflects the development of Glasgow. Glasgow may not have grown beyond a quiet monastery town had it not also been the lowest fordable point on the Clyde. As the city flourished in the 18th and 19th centuries, the demands for better communications resulted in bridges being built which, in turn, encouraged further trade and prosperity. So bridges both nurtured and reflected the growth of the city.

The story of Glasgow's bridges also reflects the story of transportation, from the pedestrian and horse traffic of the middle ages, through railway mania in the 19th century, and the 20th century age of the motor car, onwards into the new millennium.

It also reflects the story of civil engineering. Developments in engineering materials and knowledge can be traced in the techniques used to construct the Clyde bridges. Timber and stone, cast iron, wrought iron and steel, reinforced and pre-stressed concrete, were all used in Glasgow's Clyde bridges. Virtually all bridge types are represented on the Clyde: the beam, beam and slab (with solid girders, lattice girders or box girders), the arch, the tied bowstring arch, the suspension bridge, the cable stayed bridge and the balanced cantilever. A walk from the Millennium Bridge to Dalmarnock Bridge will take you past exhibits of more than 150 years of bridge engineering history.